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A B A N A C H  SPACE WITH, 
UP TO EQUIVALENCE,  

PRECISELY TWO SYMMETRIC BASES 

BY 

C. J. READ 

ABSTRACT 

It is well known that the classical sequence spaces co and Ip (1 _-< p < 0o) have, up 
to equivalence, just one symmetric basis. On the other hand, there are examples 
of Orlicz sequence spaces which have uncountably many mutually non- 
equivalent symmetric bases. Thus in [4], p. 130, the question is asked whether 
there is a Banach space with, up to equivalence, more than one symmetric basis, 
but not uncountably many. In this paper we answer the question positively, by 
exhibiting a Banach space with, up to equivalence, precisely two symmetric 
bases. 

w Introduction 

(1) If X is a Banach space with a normalised symmetric basis (x.)~=l with 
symmetric constant 1, and or = {o7}7=1 is a sequence of consecutive disjoint finite 
subsets of the integers, denote by Or the number of elements in ~ ,  and define the 
"averaging projection" Po on X as follows: 

Then we quote from [4], p. 117: 
If X is a Banach space with normalised symmetric basis {x,}~.l, and P: is an 

averaging projection X--+ X, put 

u = 

Then X ~ X ~ U. 

(2) Our method of producing a space with just two symmetric bases is to 
produce spaces Y and Z, each with a symmetric basis, so that there is an 
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averaging projection P on Y with P Y  -~ Z,  and an averaging projection Q on Z 

such that Q Z - ~  Y. 

It follows from the proposition that 

Y ~ - Y ~ ) Z  and Z = Z ~ ) Y .  

Thus Y ~ Z. So Y has at least two non-equivalent symmetric bases. We then, 

in the remainder of the paper, prove that, up to equivalence, the only other 

symmetric basic sequence in Y is the unit vector basis of l~. Since our space is 

obviously not equivalent to l~, this completes the proof. 

(3) First we introduce some notation. Let us choose, once and for all, a 

bijection 

i - - * ( ~ ( i ) ,  ~b(i)): N---> N • N. 

Then if X is any Banach space with chosen normalised symmetric basis (e,)T=,, 

and x, y E X, we define 

(a) x : y = ~,,., x~,o~y~o~ei (x = ET=, xiei, y = ~7~, y,e~). 

(b) [x, y] = E7=1 z,ei, where z2, = y,, z2,-~ = x~ for each i E N. 

If rr is a permutation on N (written 7r E S(N)) we define 

(c) rr(x) = x,o,  x..)e, ,  

also 

(d) i =  (Ix I), 
where ~" is chosen so that the coordinates of s with respect to (e,)7-,, are 

monotonic decreasing. 

These definitions of course depend on the choice of symmetric basis; but it will 

always be clear what basis we are using. 

Considering definition (a), we see that, in the general case of a Banach space 

with symmetric basis, there is no guarantee that just because x, y are in X, x : y 

will be in X. However, we shall in fact be using spaces which not only do have 

this property, but also satisfy the very strong inequality 

I1 x :  y Ilx --- II x I1~ II y II,, § II y II~ II x [Ix. 

it  is by this inequality that we prove that there are only three symmetric basic 

sequences in our space (up to equivalence). 

NcrrE. Z. Altshuler, in [1], uses techniques somewhat similar to those in this 

paper, to produce a space with symmetric basis which contains no Co or Ip, and all 

its symmetric basic sequences are equivalent. His norm satisfies 

Ilx:yll,,<=c(llxlMlyllx+llyllJx[I,,), with C >  1. 
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It is not  clear that  there  are norms not  equivalent  to the co norm,  which satisfy 

the s t ronger  inequali ty:  our  first task is to  p roduce  some.  

w Producing some special norms 

Let X = !1. For  the purposes  of the definitions (a) to  (d) in w the symmetr ic  

basis we use is the canonical  unit  vec tor  basis (e,)7=,. We define a sequence  of 

norms I1" lit-)inductively, as follows: 

Ilxll,,,-- Ilxll,,; 

{ ' 
]Ix ]1(,+1) =inf IIx,ll,, + ~ (IlY, U, IIz, L +ItY, LIIz, II, ) 

r ~ l  

such that  there  are r r �9 �9 ", 1r~ E S(N) 

with IxJNx,+~, w,(y, : z , )  

We  then  put  

II x II = ] ~  II x II, = inf I] x II,. 

This no rm is a symmetr ic  no rm on I] satisfying 

Itx L---I1~ II-IIx I1,,, 
and 

In particular,  

k 

]I x iI = inf j[ x, ]I,, + ~ ([I Y, [k,ll z, ][ + II Y, ][ ][ z, ][~,) 
r=l 

such that IxINx,+2 r r . (y , :z ,  . 
r = l  

IIx: y II---IIx LII y II + II y II~,llx II. 

In fact, ]]. ]] is the largest symmetr ic  norm on !, less than I]" ]],, which has this 

proper ty .  We wish to p rove  that  11" II is not  equivalent  to [[. L -  We do this by 

showing that,  as k---) ~, 

Suppose this is false. Then  vk must tend to some constant  K. Let  us choose e > 0, 

and suppose that for m _-> N, v,~ _-> K - e. Then  for any m _-> N, we can choose x, ,  

{y,, z, : r = 1,. �9 k}, such that 
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and 

ei _-< x, + r :z,), 
i = l  r = l  

k 

IIx,ll,, + E (11 y, II~ollz, II + II z, U~lly, II)< g + e. 
r = l  

Therefore  there must be vectors y, z and a permutation r such that 

m 
w(y:  z ) . ( e ,  + . . .  + e,,,) >- ~g-- i ( l ly  II~llz II + IIz II,oll y II). 

Suppose that y and z 

If 

then 

Suppose 

are two such vectors, say 

il y I1~o = It z I1~0 = 1. 

r : z ) "  (e, + . . .  + era) = A, (with 2/(K + e) < A < 1) 

IIz II +lJy I1< A(K + e). 

Ilzll= 8X(K+ ~), 

(*) IlY II--< (1 - 8)X(K + O. 

There  are at most ( N - l )  coordinates of z which are greater than 

,$A (K  + e ) / (K  - e), and at most (N - 1) coordinates of y which are greater than 

(1 - 8)A(K + e ) / (K  - e). Therefore  

A,, = r  + e s )  

=< (N - 1) 2 + (m - (N - 1)2)a (K  + e)max(& 1 - 8) 
K - e  

For small choice of e, and large m, this is a contradiction unless $ or 1 - $ is 

very close to 1. But since II Y II, IIz II are both greater than or equal to 1, in view of 

(*) we cannot have $ or 1 -  8 less than 1/(K + e). So in fact we cannot have 

vk-~ K, so vk is unbounded.  

We now define 

Ilxll w ) =  inf NIIx, ll,o+~llx211. 
xl+x2-1xl 
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LEMMA 1. 

PROOF. 

can choose xt, x2, yl, y2 such that 

Xl, xz >= O; 

x,+x~=lxl, 
and 

For each N, II" II '~' also has the property that 

II x :  y I t '  -< II x II~oll y Ig ~' + II y H x II '~'. 

Given x, y we may choose e > 0 ,  and put 8 = e/illx II,o +llrl l~).  We 

y,,y2>0;= 

y, + y2 = l y h 

IIx II'N' = NIIx,  ll~ +111x211- 8, 

II y Ig N'---- NllY, ll,o +--~ Ily211 6. 

Then (x, + x~):iYl + y2) = [x :y I; therefore 

x, :(y, + y2) +(x ,  + x~): y, + x~: y~ ~ Ix :y  1, 

and 

y l V ' - -  < NIIx, :(y, + Y~)II~ + Nllix, + x~): y, II,o + l l l x ~ :  IIx: 

--< NIIx,ll,oll y, + Y~ll,o + NIl Y, ll,ollx, + x~ll~ 

1 
+ ~ ill x=ll II y211,o + II y~U II x211~) (by the known properties of~l" II) 

---- ill x II '~' + S)II Y II,o + ill y II '~' + S)ll x II~ 

---- II x II 'N' II y II,o + II y II ''~' II x II,o + ,.  

Since this is true for any e > 0, we have as required 

Ux: y II '~'_-< IIx I r ' l ly  II,o + Ily II ''~'llx I1~. 

The norms I1" II '~' have the following properties: 

(1) (1/N)llx I1~o----IIx I1'~' - -< Nllx II~. 
i2) II e, II'N' = 1/N. 
(3) lie,+ " '"  + e~ll 'N'-- 'N as k---~oo. 

It follows that we may choose increasing sequences (~)7- , ,  (k,)7-,, such that 

N ~ = k ~ = l ,  and 

Ille,+ 
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Let us choose such a pair of sequences (N,),~I and (k,),~l. Having done this, we 

define our spaces Y and Z. 

w Definition and elementary properties of Y and Z 

For each x E !1, define Tx to be that vector in Ix whose ith coordinate is 
~][x I] (N,'. Then 

II Zx I1,, ---- II x II,, II Tel I1,, 

-<�88 II,, ~ II elll 'N'' 

<-lllxll,,. 

Similarly, define Sx to be that vector in l, whose ith coordinate is ~. (,~)' IIx II ''~. 
As before, 

Ilsx t1,, --< IIx II,,llse111,, =<-~llx II,,- 

Then we define Y to be the completion of 11 under the norm 

II x I1~ = II x II,o + II sx II,o + II ZSx II,o + II STSx I1~ + " "  

= ~ (ll(ZS)"x U~o +IIS(TS)"x II,o), 
n ~ 0  

and we define Z to be the completion of 11 under the norm 

II x II. = II x I1~o + II Zx I1~. 

Then we see that, for any x E !1, 

IIx II.o--< IIx IIY ---- 21Ix U,,. 

and 

]Ix II~ ~ [I x [[, ~ 2[l x I[,,- 

The unit vectors (e,)?-i of 11 now form a 1 symmetric basis of Y (or Z) .  

LEMMA 1. On 11, the Z norm is continuous with respect to the Y norm. 



Vol. 40, 1 9 8 1  SYMMETRIC BASES IN BANACH SPACE 39 

For if x = XT=, Ale, • Y, then for some M, 

(~)' l lxtl '"<=m forail i EN,  

hence 

Ilx II '~ ~ M(~)'" 

therefore Tx E I~ and x E Z. 

But the Z-norm and the Y-norm are not equivalent; for 

but 

lie'+"" +e'llz 3 N, = ~  

Let cr =(ai)f=, be a sequence of consecutive disjoint finite subsets of the 

integers, such that 6j = k, for all j. We have associated averaging projections 

Po: Y--~ Y and O, , :Z- -*  Z. 

LEMMA 2. P . Y  ~ Z ;  OoZ ~ Y. 

We prove that Q~Z ~ Y ;  the proof that P . Y  ~- Z is very similar. Q . Z  is the 

closed subspace of Z generated by vectors 

Now & = k,, and we know that 

I.) i ~--- ~ e i .  
i E o  i 

, ,+, ,  

So we can roughly normalise v, by replacing it with 

4vi 
/'4, 

We then have 

~= 2 2-~ = 2-~" 
l= !  
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Then, if v = Z~-] A, wi, 

II (z)ll IIv IIz = II v I1~ + T A,w, 
�9 y 

If --<411,~ II,o+ A,e, + Y, lx, IIIT(w,)-e, II~, 
Y i=1 

r 

~ 411~ II~o +II~ II~ +211,~ll~o~,llr(w,)-e, ll,, 
r 

--< 411~ II~o +II~ llY +II~ ll~oE 2 -'§ 
i = l  

-< 6 U A Jl~ + IIA Ur --< 7IJA Ur 

However, 

So in fact {w~}7-~ is a basis for QoZ, equivalent to the unit vector basis of Y. 

Adding on the similar result PoY-~ Z, and applying the argument of [1], 
section 1, we learn that Y ~ Z. 

The rest of this paper is devoted to proving that, up to equivalence, there are 
no further symmetric bases of Y. 

D E F I N I T I O N .  

Thus 

Let y ~ Y. We define 

{ (TS)("-~y, if n is odd, n => 3, 

~o,(y) = S(TS)'"-2~y, if n is even, n >0 ,  

lYI, if n = 1. 

fly II. = 'Z II~(y)U.. 
n - 1  

3. Let (y.):-1 be a symmetric normalised block basis of Y. Suppose 

that ~,,=~Um,(y.)U,o does not tend to zero as k --.oo uniformly in n. Then (y.) : . l  is 

equivalent to the unit vector basis of l~. 
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PROOF. By hypothesis we may find e > 0 and a subsequence (y~),~, of (y,)7.~, 

and integers ml < m 2  < --- such that, for all i, 

"~-~ ][ o,(y~ )]]~_-> e. 
r--m~ 

Then 

m 

II ,y., + - '"  + II > + - . .  + 

) 
t - - I  x r--m~ 

So the subsequence is 1/e equivalent to the unit vector basis of 11; since the 
sequence is symmetric, this proves the lemma. 

We now have to investigate all symmetric block bases of Y such that 

~ [[o~(y.)[l~, ~-~ ,0, 
r ~ k  

uniformly in n. 

w Ramsey theory 

In this section I am going to state, without proof, two Ramsey type results. 

DEFmI'nON. (a) Let A be the collection of all strictly increasing sequences 
n ffi (n07_1 of natural numbers. 

0s) If m,n EA,  say m C n  if {~}T-aC{~}T-,. 
(c) If m, n E A define m �9 n = 1 where l, = rn~. 

A may be regarded as a measurable subset of 2 ~. 

1. I f  C C A is measurable, then either 

(1) there exists n E A such that for all m C n, m E C; or 

(2) there exists n E A such that for all m C n, m ~ C. 

DE~,~rnoN. Let O :A-*A be the "shift" sending (n~)7-1 to (~)7-1 where 

We deduce from Lemma 1 the next lemma: 

2. Suppose I- :A-* K is measurable, where K is a compact metric 

space. Then we can find an n E A and an x E K such that, for all m C n, 
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�9 ( O ' m )  ) x. 
r ~  

(This is essentially a repeated application of Lemma 1, together with a 

diagonal sequence argument.) 

w Definition of convergence "permuted weakly" 

DEFINITION. If (x~)7-1Cco, we say 

.g~ -~ s 

if x, ~('~ a and ( x , -  a )  ̂  ~%.'0/3. 

("permuted weakly") 

Illx  - I -  :/3)11 o < 2-'. 

Paoos. Without loss of generality a = 0. Then since 

x , ~ 0 ,  ~,-~/3, 

we may first choose a subsequence m E A so that 

[li,  - / 311 ,0<2  -'-2 (i = 1 , 2 , . . . ) .  

We may then choose a subsequence n C m, so that 

cr, = {j EN: Ix ,~ -e~ t>2  -'-2} (i = 1 ,2 , - - . )  

are a disjoint collection of finite subsets of N; let us say 

max ~r, < rain cr~+l - 1. 

Then we can choose a permutation ~r ~ S(N) which, for each /, takes the 

largest I cr~ I coordinates of e, :/3 onto the largest I or, I coordinates of [ x~ I; and 

then n and ~- will satisfy the condition of the lemma. 

LEMMA 1. 

each i, 

I f  x, ) a,/3, we can f ind n E A and  7r E S(N) such that, for 

(Recall that, if x E Co, ~ = 7r(lx 1), where ~r is chosen so that the coordinates 

of i decrease.) 

We may think of this as saying that, for large i, x~ looks like a on the first few 

coordinates, but like a permutation of/3 on coordinates further on. This is made 

formal by 
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w Applying Ramsey theory to the problem in hand 

First, some definitions. 

Let 

v = (Co, (r(c0, l,)) N. 

Denote an element v ~ V by (v,).=~ (vi ~ Co). Then we define $ : Y--* V by 

y --~ {to, (y)}T=, �9 

Then 4) is continuous, since each to, is norm to norm continuous (in fact a 

contraction). 

Now let Z~ be the collection of all norm continuous maps B(l,)--* V, with the 

topology of pointwise convergence. Z~ is a locally convex space. 

For z E Z,, define ~ E Z1 by 

(~(x)), = ( ( z ( ~ ) ) , )  ^ 

for each A E l~, i ~ N .  "A" is a measurable map zl---~z,. (In fact, "A"  is not 

continuous since we have the weak topology on Co.) 

Let (y,)7=1 be a symmetric normalised block basis of Y. Then define 1- : A--, Z1 

by 

where 

r ( n )  = T ( ' ) : B ( I J  ---* V, 

LEMMA 1. ~" is continuous and r(A) is precompact. 

PROOF. (1) ~" is continuous. For in Z,  we have a subbase of neighbourhoods 

{z ~ z,:  I<(z(x)),, u)- ,~ l< 1} 

(where A, g ~ It ,  ot E R, and ( ), denotes the ith component). 

The inverse image of this under ~" is 

which is open in A because 

2 1 ~ , 1  ,o .  
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(2) ~'(A) is precompact. For for all n E A, A E B(II), we have 

T" ' (A) ~ (B (Co)) N 

since (y,)7-1 is normalised. 

But (B(co)) ~ is compact in V, so ~'(A) is in a collection of uniformly continuous 

maps B(IO--~ K, where B(IO is separable metrisable, and K is compact. Thus 

~'(A) is precompact. 

We may now apply to ~- Lemma 2 of w and obtain a z E Z,,  n E A such that 
for all m C n, 

~ ' ( O ' m )  ' ~  , z .  

Then we define t r :A ~ Z1 by 

o ' ( m )  --- ('r(m �9 n ) -  z )  ^. 

Then o- is measurable and o'(A) is precompact. So, applying Lemma 2 again, 

we obtain z ' E Z ,  and n ' E A  such that for all m Cn', 

Now z 

a ( O ' m )  , z'.  
r ~  

and z '  are maps B(I~).---~ V. Since 

V = (Co, or(Co, !,))", 

we may consider the "components"  

zi : B(IO--~ co 

and 

z',: Co 

such that 

(i = 1 , 2 , . - . )  

(i = 1 ,2 , . . - ) ,  

z(A) = (z,(A))7=, and z ' ( a )  = (z;(A))7=, (a ~ !,). 

We then have, for each A E 1, and m C n ' .  n, 

tO, ~, ~ Z ,  , Z ', . 

We wish to identify z, and z', more closely; the following iemma enables us to 

identify z~. 
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LEMMA 2. 

(1) 

(2) 

(3) 

Suppose also that for all m E A, 

Then 

PROOF. 

Suppose q~ : !1 --* Co is a contraction, and satisfies 

~(x)_-__0, ~ ( x x ) = l x l ~ ( x )  (AER,  x~ / I ) ,  

(D(X 1 ~l_ X2) ~ ~)(Xl) "~- (~)(X2) (Xl,  X2 E 11), 

Ix, l>=.lx21 ~ 4,(xl)>-_ q,(xO. 

pro 
, z(A),z'(A). 

z '(A ) = (z '(e,):  A )^, for all a E !,. 

Put x, = q~(e,) and, applying Lemma 1 of w choose 

rr E S(N) such that, for each i, 

IIIx~ - z ( e , ) l -  ~r(e, : z'(e'1))ll~o < 2-'. 

Since x~ -> 0 tor all i, and x~--~ z(e~), we may assume that 

II(x.~ - z(e,))-II.o < 2 -'-=, 

so that 

IIx.~ - z ( e , )  - or(e ,  : t3(e,))ll~ < 2 -'+'. 

In view of our hypotheses (2) and (3) we have, for all A E !1, 

i=1 i-1 

So there are vectors et and e2 such that 

IIA II,oz(el) + ~(A : z ' (e l ) ) -  e, ----< , ( ~  A,e,~) 

with 

B u t  w e  k n o w  that  

m E A  and 

IIx II,,z(e,) + ~r(A : z'(el)) + e2, 

Ile, l l ~  ~ IA,12-' 
i-1 

(i = 1,2). 

Oto 

, z(,~ ), z '(,U. 
r ~  
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Therefore we must have 

z ' ( ~ )  = (4  : z'(el))  ^, 

as required. 

In order to identify z, we need a further lemma: 

p ~  

L E t ~ ,  3. Suppose xi E Co, x, ~ or,/3. Then for each n, 

fix, II <'~ II[~/3]11 ~"> 

(where [a,/3] is as in pan (3)b of w 

PROOF. [0" [l'"' is equivalent to [[" [I,o, and is 1-symmetric; but if x, , or,/3, 

then, for large i, I x,[ is co-norm close to a permutation of [I a I,[/31]. 
Now we return to our symmetric block basis (y~)7-1 of Y. By extracting a 

subsequence we may assume that for all n E A, 

o~ x j y . . ,  , z, O0, z~(X).  
t ~  

In view of our first lemma, we know that there are elements (/3,)7-, such that 

z~(X)=(/3, : x )  ^ 

for each i. It is obvious that zl(A) = 0  for all A ; and for each i >- 1, our second 

lemma shows that 

z,+1(A ) = [ T ][z,(A ),z~(A )], 

where we take T if i is even and S if i is odd. 

So we have identified z,, z~ as follows: 

LErv~ 4. There exists a collection (/3,)7=1 C co, such that for all it E !1, 
(a) z,(A) = 0, 

(b) z~(A) = (13, : A)^ for all i >= 1, 

(c) z,+,(A )= [ T][z,(A ),z~(A )] (i >= l), 

where we take T if i is even, S i[ i is odd. 

Now, for each i, 

w, ~yj+, ------~ z,(,~ ) ,z;(X ), 
r ~  
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so for each fixed M, 

M 

J m l  

Assume that (y,)7=a is not equivalent to the unit vector basis of 11. Then by 

Lemma 3 of w 

i m b t t + l  

uniformly in m. Therefore for each A ~ !1, 

"-~,  ~ II z,(x)ll~ v Ilz;tx)ll~. 
t - -1  

But the left-hand side is [lYT.,X,y,+,ll~. Therefore, if our block basis is C- 

symmetric, it must induce a norm which is C-equivalent to 

1114 III = ~ IIz,(x)ll~o v IIz;(x)ll~. 

It is sufficient for our purposes to prove that this norm must be equivalent to 

either I1" II~ or I1" IIz. 

w Investigating ]11" I]1 

III x 111 depends on A and the vectors. (/~),'.1. We may thus regard II1" III as a 
function 

p : !1 x c o ~---, R § U {0o} 

oa 

: (~, (t~ ),-l )--, ~ II z, tA)ll~o v II z ;(A)ll,o 
#--1 

where z,, z; are defined as in Lemma 4 of the previous section. 

We shall show that II1" III is equivalent to I1" II- if there is a single/3, ~ 0 for odd/ ,  

and otherwise is equivalent to I1" IIz. 
Regarding c~' as a vector lattice, we observe that 

It3,1<lt~21 implies p(A, tOl)-<p(A,~12), 

tor all a E 11, ~1~,/32 E cg'. 
N N Let ~ ' : c o - ' ,  Co be the projection onto the odd coordinates; 
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and 

T(x : y) _-__ II x I1~o Zy + II Y I1~ Zx. 

Let zj and z~ (i = 1 to co) be the functions such that 

p(X, ~ is )  -- 5', IIz,(x)ll~ ~ Ilz;(A)ll,,, 
i - - I  

and put 

where 

fl"={flO' if i is odd, 

if i is even. 

Then, for all /3 E c~, )t ~ 11, 

p(x,  ~ris) v p(~,  (1 - ~,)is) ~ p(X, is)-< p(x,  ~ is )  + p(x,  (1 - ~ ) i s ) .  

It is thus sufficient to prove 

LEVIMA 1. 

(1) I[ frisCO, p(a, ~ris) is equivalent to IlallY. 

(2) I[  (1 - I t ) i s#  0, p(A,(1 - 7r)is) is equivalent to IIA Uz. 

We prove part (1); part (2) is entirely similar. Firstly, we have 

(a) p(A, ~ris) >= (sup II t32,-,11~)11 A IIY. 

In view of (*) above, the worst case is when 

/31 = C" el, /32,+1 = 0 for all n => 1. 

But in this case we have equality. 

Second, and harder, is 

(b) p(h, ,ris)<=p(el, ,ris)-[[h [[y. 

Here at last we use our inequality 

II x : y II'N' _-__ II x II,oll y II 'N'+ II y I1~ II x II '~' 

(Lemma 1 of w This implies that 

S(x: y) _-__ IIx I1~o sy + Ily II,osx, 
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~, =llz,(e,)ll~ovllz;(e,)ll~o (i = 1 ,2 , . . . ) .  

I claim that 

z,(;t)~ll,~ll~oz,(e,)+ ~ o.,,_~,(;~).~§ 
o : a 2 j ~ i - 2  

This is proved by induction on i, advancing two steps at a time. The  result is true 

for i = 1. Suppose the result holds for i = 2 k -  1. Then 

z2k(x) = S([z,~_~(x),/32k_, :x ] )  

<=S([Z2k-,(e,),I32k-,]:A)+ ~, SoJ2k-2j-,(A)'e2s., 
O~_i<k -2 

<=ll~ll~oS[z~-,(e,),~-,]+e~k-,s~ + ~, so~_~,_,(~)-e~,+, 
O~j~k-2 

=llxll~oz2~(e,)+ ~ ,,~,_~,(x).~2,§ 
O:~2j :i2k -2  

This is the result for i = 2k. Then 

Z 2 k + l ( / ~ )  = Z, Z2k(I~)  (there is no contribution from/3z~) 

---- llx II~o Tz~,(e,) + ~ Tto2k-2,(A) �9 e2,+, 
0~2 j  : i 2k  - 2  

= IIx I1~ z2k§ + ~ a,2k+,-2, (A). e2,§ ; 
O~2j:~2k - I  

so by induction, the claim is true for all i. 

But now we are home. For 

p(,~, ~-~) = ~ II z,(A)ll~ v II z',(,x)ll,o 
i =1  

<_--x~{tAIl~o(}lz~(e~)ll~ ovllz~(e~)l[~) + ~ ~ I]o~-2J(A)ll~'e2J+~ 
i = l  i--I O~2j"~ [ --2 

i=l j=l 

= I[A IIyp(e, ,  ~r13). 
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Given the similar result 

(supll #~, I1~o)11 ~ IIz _-< ptX, (1 - ,'n')lJ)<=p(e~, (1 - "n')/3)ll a Itz, 

we know that p(A,/])  is either equivalent to I1" I1~ or I1" I1~, depending on whether 

~r/$ = 0. But at the end of w we deduced that any symmetric block basis of Y 

which is not equivalent to the unit vector basis of l~, must induce a norm which is 

equivalent to 

Illx lll = p (x ,  IJ ) 

for some/1. Thus any symmetric basic sequence in Y is equivalent either to the 

unit vector basis of la, or to that of Y, or to that of Z. So Y has just the two 

symmetric bases. 

w Banach spaces with any finite number of symmetric bases, or countably 
many 

This section does not contain formal proofs. First, let us consider our maps S 

and T: l l  ~ Ii, and produce some others with similar properties. 

Recall that Tx is that vector in l~ whose ith coordinate is ~[Ix ]]~N~, and Sx is 

that vector in 11 whose ith coordinate is -~. ( ] ) ' .  IIx II 'N'. 
We may similarly define, for 1--< r < 2, 

S,(x) = K, " ~ e, .[Ix II 'N~" r'. 
i = l  

If the normalisation constants K, are chosen correctly, we will have 

1 IIs~ll,, 
IlS'e ' l l" = ~- - sxup  Ilxll,, " 

We will also have, for each r C [1, 2), 

S,(x : y)  -_< IIx lifo S,(y) + II Y I1~o S, (x). 

In order to produce a space with N symmetric bases, we take N different real 

numbers r l , "  ", r, from [1,2), and define our space Y to be  the completion of li 

under the norm 

Ilx IIY -- IIx II~ + II s:, x II+ +lls::s: ,xl l~ + . . .  

+ l l s , , . . .  s , ,x  I1~o§ -- �9 §  s , , ( s , . . ,  s , , ) 'x  I1~§ - .  �9 

-- Y~ ~ II(s, , .  s,,_, . . . . .  & ) . ( s , .  . . . . .  s, ,Yx I1~. 
i=O i = 0  
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Then, by methods precisely analogous to the case N = 2, we discover that Y has, 

up to equivalence, precisely N symmetric bases. 

In order to do the eountably infinite case, we need to be slightly more subtle. 

In this case, we choose a strictly descending sequence r0, rt, r2, '" ", from [1, 2), 

and put S = S,o and T. = S,. (n _-> 1). 
Also, we split up the natural numbers into a countable collection of disjoint 

infinite subsets (Hn)~=,, and define ~'n :11-o l~ to be the natural projection onto 

the coordinates in the n th  subset HM. 

We shall define our new space Y as the completion of It with a new norm [[. [[v, 

which is, as before, an infinite sum of the supremum norms of certain vectors. 

In the earlier example of a space with two symmetric bases, the collection of 

vectors used was 

x ,  S x ,  T S x ,  . . . ,  ( T S ) M x ,  S ( T S ) ' x ,  . . " .  

In this case, however, the Y norm is to be the sum of the supremum norms of 

all vectors in the following collection: 

x, ( = s x  )7.1, ( T, rr, Sx  )7_l , OrjST,~r, Sx  )~j.~ , ( Zj~rjST,~r, Sx  )~_~ , . . . , 

that is, the collection of all vectors of form 

I~l (Z, dr,, S ) x  ( i ~ , . . . ,  i,, ~ N) 
k = l  

or of form 

, r ,~ . ,s .  [ I  (T, j r , , S ) x  
k = l  

as m runs from 0 to infinity. 

What happens is, we take the supremum of the vector x, and then split up the 

sequence S x  into a countable number of disjoint infinite subsequences, and add 

on the suprema of each of these "bits".  We then apply T, to the i th "bit",  and 

obtain an infinite collection of new vectors; and we repeat the whole process for 

each one of the new vectors in turn (adding on the suprema, applying S and 

splitting up, adding on all the new suprema, applying an appropriate T,). 

We continue the process inductively; and this gives us a new norm I[" [IY which 

satisfies 

II x IIY = II x § E II § E II IIY. 
1 1 
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(Incidentally, it is still true that this norm is bounded by twice the It norm.) So if 

we define new norms II" U,,, also symmetric, by 

then we have 

II x I1,, = II ~ + II T,x I1~, 

II x I1~ = II x I1~o + E II ~,Sx IIz,. 
I 

Now the Z~ norms, i = 1 to 0% correspond to the countable collection of 

alternative symmetric bases which Y contains. In fact, using our earlier notation 

(at the beginning of w if we choose n E N and take an averaging projection on 

Y whose lengths Ks correspond to those k, (see the end of w such that i ~ HN ; 

then the image of the averaging projection is isomorphic to Zn. But, in Zn, if we 

take an averaging projection with ~i = kj, we have an image isomorphic to Y 

again. Thus Y = ZN for all n. So we have found our countable collection of 

symmetric bases; and, as before, we wish to show that there are no more. (This is 

where the proof becomes very informal.) 

Now, as in the case of two symmetric bases, the space we have obtained 

contains copies of l~; and if a symmetric basic sequence (y~),_~ is not equivalent 

to the unit vector basis of l~, then the amount of weight in the "tail" of the 

sequence of supremum norms defining ]]y, ]] must tend to zero uniformly 
(compare Lemma 3, w So, as before, we can assume that there is a limit p.w. of 

the vectors which defines the Y norm of El Ajyi (A ~ l~). 

If these limits are (ak(A),/3k(A)) (as k runs through the integers and 

(ak (A ), /3k (A )) run through the p.w. limits of all the vectors defining the norm), 
then 

[.,s] 
/3~(A)=(A:/3k(e.)) ^ and a k ( A ) =  T~ [a,(A),/3,(A)], 

where ,r~S or T~ and i are chosen appropriately. 

Now the maps ~r~S; i E N and T~ still satisfy 

and 

r , (x:  y)--< IIx I1~ r,y + Ily I1~ r,x 

~ ,s  (x: y) _-< II x II~,Sy + II y II~,sx. 

Using arguments similar to those of w we can find an upper hound on 

]]Y.~ A,y, ]] which, within the symmetric constant of the sequence, turns out to be 
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2~=~ ]1 ak (el),/3k(e0Ll~" II'X I1,~, where for l[ A I],k) we take II a I1~o if/3k (e,) = 0, but we 
take the appropriate Y or Z~ norm for the value k if/3k(el) ~ 0. But 

IIak (el),/3k(el)ll~o < oo 
1 

or else II Y, II would be unbounded.  And  now we use the fact that our norms I1" IIz, 
are essentially descending (in other words, the norms I1" IIz,,, 11" IIz,2, I1" IIz,.3,"" 
are uniformly continuous with respect to I1" Ilz, ). 

For then, if /3k~0 at a point corresponding to II. IlY, then the sequence is 
equivalent to the unit vector basis of Y; and otherwise it is equivalent to the unit 
vector basis of Zi, where i is the smallest value (hence, the largest norm) for 
which there is an appropriate /3k(el)~ 0. 

Thus Y has a countably infinite number  of symmetric bases. 

w Notes 

There is a proof of Lemma 1 of w (Ramsey theory) in [2]. The existence of 
Orlicz sequence spaces, with uncountably many mutually non-equivalent sym- 
metric bases, is proved in chapter 4 of [4] (see p. 153), and also in [3]. 
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